
NASA

Technical

Paper
3272, Part IB

April 1993

-NASA

- f

w,

Steady Induction Effects
in Geomagnetism

Part IB: Geomagnetic Estimation

of Steady Surficial Core Motions--
A Non-Linear Inverse Problem

Coerte V. Voorhies

(NASA-TP-3272-Pt-IB) STEADY

INDUCTION EFFECTS IN GEOMAGNETISM.

PART 18: GEOMAGNETIC ESTIMATION OF

STEADY SURFICIAL CORE MOTIONS: A

NON-LINEAR INVERSE PROBLEM (NASA)
25 p

N93-26421

Unclas

HI/46 0167267

i





NASA
Technical

Paper
3272, Part IB

1993

National Aeronautics and

Space Administration

Office of Management

Scientific and Technical

Information Program

Steady Induction Effects
in Geomagnetism

Part IB: Geomagnetic Estimation

of Steady Surficial Core Motions--
A Non-Linear Inverse Problem

Coerte V. Voorhies

Goddard Space Flight Center

Greenbelt, Maryland





I. INTRODUCTION

Geomagnetic secular change has long been attributed to an imbalance

between the effects of motional induction and magnetic flux diffusion

within Earth's electrically conducting liquid outer core. In Part IA

(VOORHIES, 1992) attention was focused on the fluid motion near the top

of the core by adopting the source-free mantle/frozen-flux core

(SFM/FFC) magnetic earth model (wherein a rigid, impenetrable,

electrically insulating mantle of uniform magnetic permeability

surrounds a spherical, inviscid, perfectly conducting outer core in

anelastic flow). Several reasons were given to further consider the

geomagnetic effects of motional induction by steady flow near the top of

the core (e.g., a steady flow explicates quantitatively most of the

recent, observed geomagnetic secular change). The theory underlying

some estimates of core surface flow was summarized. Consequences of a

few kinematic and dynamic hypotheses were derived: fluid downwelling is

required to change the mean square radial magnetic flux density averaged

over the surface of a FFC; downwelling implies poleward flow for

surficially geostrophic core motions. The solution of the forward

steady motional induction problem at the top of a FFC was derived and

found to be a fine example of deterministic chaos. Implications of

persistent, if not steady, surficially geostrophic flow were described

which apparently help explain certain features of the present broad-

scale magnetic field and perhaps paleomagnetic secular change.

To investigate steady induction effects in geomagnetism, it is

useful to regard the SFM/FFC model as a first approximation and to treat

the supposition of steady surficial core flow as a hypothesis. To test

hypotheses against observations, it seems appropriate to (a) understand

both; (b) develop a satisfactory method for modeling the relevant

observations in accord with the hypotheses; (c) apply the method to make

quantitative predictions; and (d) subtract predicted from observed

values and measure such residuals in units of the estimated uncertainty

in the observations. In the context of the SFM/FFC approximation, this

paper develops a method to fit the secular change indicated by

geomagnetic field models in accord with the hypothesis of piecewise,

statistically steady flow. Such field models represent the relevant

geomagnetic observations very well and are here preferred to raw data

for reasons noted in Part IA.

With enough perfectly accurate information on the normal component

of the time-varying magnetic flux density at the surface of a non-

diffusive core, the steady surficial core flow inducing those variations

could be uniquely determined by simple linear methods-provided the

interior of the cryptic set is indeed empty (VOORHIES & BACKUS, 1985).

It can be assumed that geomagnetic observations are not perfectly

accurate and are sparsely distributed in space and time; therefore, they

are not complete in either the spatial or temporal domain. It can

further be assumed that models of such data are also imperfect and

incomplete (e.g., truncated spherical harmonic models are incomplete in

the spectral domain despite their completeness in the spatial domain).

It follows that there is not enough perfectly accurate information at

Earth's surface, much less at the top of the core, to sustain the simple

linear methods. One may, however, seek a steady surficial core flow

which tracks that part of the total secular change indicated by real

models of real data.



The inverse problem of deriving steady surficial core motions which
fit imperfect models of observed geomagnetic field evolution is non-

linear due to the appearance of a transcendental exponential operator in

the solution of the forward steady motional induction problem (IA).

Previous studies of the steady motions hypothesis (e.g., BLOXHAM,

1987a,b, 1988a,b, 1989; VOORHIES, 1986a,b, 1987a,b; WHALER & CLARKE,

1988) have noted the non-linear nature of the inverse steady motional

induction problem. Methods for solving the non-linear inverse problem

were developed and applied by VOORHIES (1987b) and BLOXHAM (1987b) .

Both methods feature iterative minimization of an objective function

composed of: a square weighted residual relative to the secular change

indicated by the geomagnetic field models fitted; an optional constraint

requiring the flow to be as surficially geostrophic as desired; and an

optional damping requiring the flow to be as smooth as desired. My

method has, however, been based on a different approach which leads to

differences in method, application, results, and interpretation.

2. APPROACH

For steady flow, the radial component of the induction equation at

the top of a FFC of radius b is, in spherical polar coordinates (r,8,_),

_tBrp(b,t) + Vs(b)-VsBrp(b,t) = Brp(b,t)_rU(b) (0)

This special case of the ROBERTS & SCOTT (1965) equation is but (13b) of

Part IA. The subscripted p on the radial component of the magnetic flux

density stresses that Brp is a prediction of the FFC approximation and

the supposition of steady Vs(b) during some time interval t o _ t _ tf;

the extension to piecewise steady flow is straightforward. At the top

of the free-streaming core (r = b, Ibl = 3.48 Mm) the components of the

steady surficial fluid velocity Vs(b)are still [u(b)=0,v(b),w(b)] and

V s, is still the surface divergence operator. Upward continuation from

the core-mantle boundary (CMB) to Earth's surface (of Brp(b,t) to

Brp(a,t) where lal u 6.3712 Mm) is also straightforward in the SFM

approximation; however, an initial geomagnetic condition during [to, t f]
is needed to use evolution equation (0).

If the SFM/FFC earth model were exact, and if complete and perfect

knowledge of the radial geomagnetic flux density component at Earth's

surface were available during some interval, then supposition of steady

surficial core flow would overdetermine the inverse motional induction

Problem under otherwise fairly general circumstances (VOORHIES & BACKUS,

1985). A least-squares approach to solving £his problem would then be

formally justified and any residual misfit would falsify the

supposition. In fact the SFM/FFC model is at best an approximation;

moreover, the geomagnetic field is but imperfectly known at 'points' in

space and time-so neither geomagnetic data nor spherical harmonic models

thereof provide either complete or perfect information on the true

radial field component. In view of the approximate nature of both the

underlying physical assumptions and the models of limited data, I

created and applied a weighted, optionally constrained, and optionally

damped iterative weighted least squares method for solving the non-

linear inverse motional induction problem posed by the hypothesis of

steady flow.
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The quantity to be minimized is the sum of three parts: a square

weighted residual 4EAr2 measuring the misfit to the expected or input

radial magnetic flux density at Earth's surface Br(a,t); an optional

constraint 4_k A 2 requiring the derived steady flow to be as nearl_g
surficially geos_rophic as desired; and an optional damping 4EkdAd_

requiring the spatial structure of the derived flow to be as smooth, or

rather, as simple as desired. The total objective function is thus

4r_ 2 = 4E(Ar2 + kg_g 2 + kdAd 2) (la)

where k_ and k d are positive damping parameters. The magnitudes of kg

and k d _etermine respectively the importance of surficial geostrophy ana

flow simplicity relative to the quality of fit. Large kg ensures

surficial geostrophy; large k d ensures simple flow. Two different types

of weights are investigated: radial field weights and general weights.

For radial field weights, the total square weighted residual

accumulated during the interval from initial time to to final time tf is

4r_r2, where semi-normalized

[Ar(a;to, tf)]2 - f

tf

<[Br(a,t ) - Brp(a,t)]2W(a,t)>dt ,

t o

(ib)

<q(r,t)> denotes the mean value of q(r,t) averaged over the sphere of

radius r (IA, equation (7)), and W(a,t) is the weight function.

Clearly, Ar2 measures how poorly the predicted radial field Brp fits the

expected (or input) radial field B r in units of the expected uncertainty

OBr(a,t) - [W(a,t)] -I/2 For simplicity, the initial geomagnetic

condition is taken to be Brp(a,t o) = Br(a,t O) with the understanding

that a model for Br(a,t o) must not only be downwardly continued, but

must be completed, to generate Brp(b, to). If no SV were predicted, then

Brp(a,t) = Brp(a,t o) = Br(a,to); then 4EAr2 would be the total square

weighted change of the radial field accumulated during the interval (the

square weighted signal). If SV were also constant, then 4r_r2/Itf-tol

would increase only if the weight function grew heavier with time;

therefore, At2 is normalized for sphericity but not interval. More

generally, the fit would be judged adequate if At2 _ Itf-tol (e.g., if

[Br(a,t) - Brp(a,t) ]2 = W(a,t)-l). The integrand in (ib) is the

instantaneous square weighted residual [Sr(a,t;to)]2 - <[Br(a,t) -

Brp(a,t)]2W(a,t)>.
The mean square ageostrophy of the flow

[Ag(b;to, tf)]2 m <[arU(b)cose + v(b)sin0/b]2> (Ic)

measures departures from the geostrophic radial vorticity balance (IA,

equation (12) whereby downwelling (_r u > 0) implies poleward flow). The

geostrophic radial vorticity constraint is not needed to derive formally

unique, piecewise steady core surface motions, but it is plausible

dynamically. In the limit as kg approaches infinity, this constraint is

consistent with tangential geostrophy-which eliminates the toroidal

ambiguity in BrV s (BACKUS, 1982) in some areas (BACKUS & LEMOUEL, 1986;

HILLS, 1979) and reduces it everywhere on the CMB. More generally, this

constraint reduces the geomagnetic information required to uniquely



determine a steady flow. Surficially geostrophic flows have also been
used to estimate the purely mechanical or topographic torque exerted by
the core on the mantle (SPEITH et el., 1986) and, with the added

supposition of tangential geostrophy, the perturbation pressure field at

the CMB (VOORHIES, 1991). Occasional application of this interesting

constraint needs no further justification.

With radial vorticity _r m r.Vxv and anelastic downwelling _rU(b) m

-Vs.Vs(b), the measure of spatial complexity adopted is the sum of the

mean square radial vorticity and the mean square downwelling of the flow

[Ad(b;to, tf)]2 - <[_r(b)] 2 + [_rU(b)]2> (id)

By (Ib-d), both lg and ld in (la) must have dimensions of time cubed.

Finitude of (id) ensures piecewise continuous fluid velocity Vs(b);

truncated spherical harmonic models of Vs(b) are continuous and smooth.

A plausible (sub-relativistic and sub-acoustic) core surface flow

need not be spatially simple, nor are very smooth flows necessarily more

reliable than other flows. The bias towards simple flow was introduced

chiefly to speed convergence of the iteration scheme. It turns out that

varying Id enables exploration of how well various steady flows fit

secular change. For example, if the SFM/FFC earth model and steady flow

admit Ar2 _ Itf-tol, then I d may be chosen so as to achieve an adequate

fit and eliminate unnecessary spatial structure in the flow; if not,

varying k d allows a reckoning of how much SV might reasonably be

attributed to a steady flow at the top of a FFC surrounded by a SFM.

Indeed, _d might be chosen to give the simplest flow yielding the 7%

residuals expected in the SFM/FFC approximation (_A). Such a choice

might reduce diffusive effects on the estimated downwelling anticipated

by MUTH (1984, pers. comm.) and BLOXHAM (1989). Moreover, non-zero I d

requires both the radial vorticity and the downwelling to be finite when

averaged over any non-zero area-in partial accord with the condition of

hydrodynamic motion (BONDI & GOLD, 1950). Non-zero kd further ensures a

surface kinetic energy density spectrum (VOORHIES, 1986a) which falls

off faster than n -3 at very high spherical harmonic degree n. Then the

total surface kinetic energy density will converge with n-even in the

absence of geomagnetic information resolving small-scale flow structure.

Other constraints could be substituted for or added to Ad2 One

tempting constraint imposes both finite downwelling and finite radial

vorticity at all points b. This would prohibit vortex sheets, vortex

lines, and singular downwellings just within the fluid core-in full

accord with the condition of hydrodynamic motion. Any core analogs of

fronts, tornadoes, plumes, or boundary currents would then have finite

thickness-even lacking the geomagnetic information needed to resolve

them. Yet tearing of the fluid is not implied by the use of truncated

spherical harmonic representations of a finite fluid velocity field, nor

does estimation of a truncated parameter set imply that unestimated,

higher degree coefficients are zero. One might place upper bounds on

fine structure thickness and reduce ringing by extending the maximum

degree of such an estimate far into the damping regime (wherein damping

rather than geomagnetic information and non-zero molecular diffusivities

determines the scale of fine structures). This may be too burdensome

computationally. Moreover, as a norm (id) is consistent with

effectively inviscid flow; norms barring sheet vorticies seem
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inconsistent with (0). So (id) offers a good compromise between

smearing out any fairly sharp-edged jets, gyres, and plumes needed to

fit secular change and ringing caused by truncation. Furthermore, if

localized diffusive flux eruption or decay masquerade as strong frozen-

flux upwelling or downwelling plumes, then the milder constraint (id)

allows, and indeed encourages, spatial confinement of such artifacts.

Arbitrary selection of I d _ 0 injects prior bias rather than

genuine prior information into what some might otherwise view as a

Gauss-Markov estimation problem. Following BACKUS (1988a), the damped

weighted least-squares approach is not stochastic inversion nor is it

properly Bayesian inference when I d is varied to investigate various

flows rather than impose, a priori, a particular personal probability

distribution upon the flow parameters. Unfortunately, with arbitrary kd

0 the derivation of reliable uncertainty estimates for the velocity

field parameters is difficult or impossible. If the contribution from

IdAd 2 to the total information matrix were replaced by genuine prior

information before inversion, then the resulting covariance could be

physically meaningful. Prior information on core motions includes: (i)

the time-averaged viscous dissipation within the core must not exceed

the time-averaged geothermal flux; and (ii) the core flow speeds of

interest must be less than Mach one everywhere and are likely much less

than the rotational speed (253 m/s at b = 3.48 Mm and 8 = K/2). The

former places no constraint on effectively inviscid motions at the top

of the core; the latter is too weak to speed convergence of the

iteration scheme. Yet the formal uniqueness problem is solved, the

existence problem is of immediate interest, and the question of

practical uniqueness within reliable uncertainty estimates is moot if

existence cannot be established. When seeking plausible solutions to

the existence problem, baseless bias towards smooth flow ought not

hinder hypothesis testing. Such bias can be reduced (or eliminated) by

reducing kd towards (or to) zero or by modifying the algorithm as

described in section 3.3.

An alternative form for the square weighted residual (Ib) suitable

for use with 'discrete' weighted geomagnetic data D(rj,tj) (be it D, I,

H, X, Y, Z, or F) gathered between radii r i and ro is

2K

C_ tf_ r°I _ [D (r, t) -Dp (r, t) ]jMjk [D (r, t) -Dp (r, t) ]kr2sineded_drdt

t o r i 0 0

where Mjk is the appropriate weight matrix function reflecting any
expected correlation between the jth and k th data and C is the

appropriate semi-normalization constant (3/4E[ro3-ri3]] (Voorhies, 1988

unpublished). LANGEL (1990, personal communication) stresses that this

form leads to simultaneous estimation of both an initial geomagnetic

field model and a steady surficial core flow. Although the formalism

and preliminary solutions lie outside the range of the present series,

it can be seen that the combination of secular change data with the

steady motions hypothesis places powerful, albeit perhaps contrived,

constraints on an initial geomagnetic field model at the CMB.
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3.1 The Square Weighted Residual

With initial condition Br(a,t o) = Brp(a,to), (Ib) is rewritten as

tf t 2

Ar2 = _ <(_ [_zBr(a,_ ) - _zBrp(a,T)]dZ} W(a,t)>dt (2)

t o to

of Ar 2 on (a;to, t f) is understood. For r _ b, thewhere the dependence

input radial field Br(r,t), the predicted radial field Brp(r,t), and
their time derivatives are expressed in terms of their compact spherical

harmonic expansions

Br(r,t) = gi(r,t)Si(8,#) _tBr(r,t) = _tgi(r,t)Si(@,#) (3a,b)

Brp(r,t) = 7i(r,t)Si(@,#) _tBrp(r,t) = _tTi(r,t)Si(8,#) (4a,b)

Repeated subscripts are summed over (Einstein convention); the spherical

harmonics Si(8, #} and radial field coefficients are defined as follows.

Let Pn TM represent the Schmidt normalized associated Legendre function of

degree n and order m (CHAPMAN & BARTELS, 1940; JACOBS, 1987). For index

i = n 2, Si(@, #) = Pn0(COSS) ; for i = n2+2m-I and m_0, S_ (8,_) =

[cosm#]Pnm(cosS); for i = n2+2m and m_0, Si(8, #) = [sinm#]Pn%n(cosS)

Clearly, n(i) and m(i) are specified by i. In the SFM approximation,

the expected radial field coefficients gi(r,t) are the corresponding

input Gauss coefficients (gnm, hn m) multiplied by In+l] [a/r] TM. The

predicted radial field coefficients 7i(r,t) are similarly defined and

are derived via spherical harmonic analysis of the radial field

predicted by steady motional induction at the CMB for t _ to . Radii a

and b are of primary interest, so let

gi (a't) = gi (t) = gi

7i(a't) = 7i (t) = 7i

gi(b,t) = Gi(t) = G i

7i(b,t) = Fi(t) = F i

(5a,b)

(6a,b)

gi = ]rijGj 7i = ]_ijFj (7a,b)

where the time dependence is understood and, with _ij denoting the

Kroenecker delta, the upward continuation operator is a diagonal matrix

with elements Yi _ = [b/a]n(i}+2_ij. For a SFM, the _ij map the radial
field coefficients, and thus the scaloidal core field, from the CMB to

Earth's surface. Curiously, a diagonal upward continuation filter with

elements that depend upon n and the temporal frequency _k of the

discrete Fourier transformed gi(r,t) _gik(r,_k) can account for the

effects of non-zero, laterally homogeneous, mantle electrical

conductivity; however, mere inclusion of m-dependent and off-diagonal

elements will not account for the toroidal-poloidal coupling expected

for laterally heterogeneous mantle conductivity (Voorhies, 1988

unpublished manuscript).

The streamfunction -T(b) and the velocity potential -U(b)

describing the steady surficial fluid velocity field v(b;to, t f) (hence

Brp(b,t_to)) are also expanded in terms of spherical harmonics:
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A

v(b) = VsT(b,@,#)xr + VsU(b,@, _) (8a)

T(b) = _iSi(e,¢) U(b) = _iSi(@,_) (8b, c)

This ensures V.v s = 0 at b-as required by the kinematic boundary and

anelastic flow conditions (IA).

Spherical harmonics S i are orthogonal on spheres, so (3a-7b) can be

used to rewrite (2) as

tf 2

Ar2 = f <[giSi - TiSi] W(a,t)>dt (9a)

to

tf

= f <(gi - 7i)[SiW(a't)Sj] (gj - 7j)>dt
to

or

tf

4r_r2 = _ [gi - 7i]Wij[gj - Tj ]dt

to

(9b)

(9c)

where the dependence of the S i on (0,#) is understood and Wij(t) H

4E<SiW(a,t)Sj> defines the elements of the time-dependent radial field

weight matrix. In the case of equal weighting (VOORHIES, 1986b), Wij

reduces to the diagonal normalization matrix for Schmidt normalized

spherical harmonics, Nij - 4E[2n(i)+l]-lsij. If the gi describing

Br(a,t) are not all equally well determined, not independent, or both,

then Wij does not reduce to Nij,
For general weights, . ./f replaces W../4_ in (9c_3 13 ): with matrix

inversion preceding assignation of element indices, _j - E-li_; Ekl -

Eo{eke I} defines the time-varying covariance associated with the input

radial field model; the e k are the unknown true errors in the input gk;

and the Eo operator yields the expected value (see Appendix).

Radial field weights rely upon a scalar weight function W(a,t)

which is the inverse of the expected squared uncertainty in Br(a,t). If

uncorrelated observations of B r were used, then W would be the inverse

squared uncertainty of the observations when and where observations

exist; W would be zero elsewhere and elsewhen as non-existent data enjoy

zero weight. When spherical harmonic models of the radial field are

used the weight function is

W(a,t) - [OBr(a,0,_,t)]-2 : [Sk(0,_)Ekl(a,t)Sl(0,#)]-i (I0)

If the covariance for the Gauss coefficients at (a,t) is V_I, then

Ekl(a,t) = [n(k)+l]Vkl[n(1)+l] - RikVijRjl, where Rik - [n(i)÷l]_ik-
Substitution of (i0) into (9b) yields

2 tf -I

Ar = _ <(gi - 7i)Si[SkEklSl] Sj(gj - _j)>dt (lla)

t o

or
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4_Ar2 = f

tf

[(gi - 7i)Wij (gj - 7j)]dt

t o

t

= f tf[[_ (_Tgi - _zTi)d_]Wij []

t o t o

t

(_zgj - azTj )dr] }dt

t o

where the radial field weight matrix elements are

(llb)

(llc)

-I

Wij(a,t) = 4=<S i[skEklsl ] Sj> (12a)

= 4=<Si[Wk(a,t)Sk]Sj> (12b)

= 4=ZijkW k , (12c)

the time-dependent spherical harmonic representation of the weight

function (including its non-zero mean value) is

w(a,t) m wk(a,t)Sk(@,#) = [SkEkl(a,t)Sl ]-I (13a)

and the symmetric third-rank tensor has elements

Zij k - <SiSjSk> = Zji k = Zik j (13b)

When the weight function is independent of position, then Wij is
If W(a,t) is everywhere and always equal to unity,proportional to Nij.

then Wij reduces to Nij. The latter conditions were in effect presumed
by VOORHIES (1986b) ; such presumptions are avoided here. Although

W(a,t) should be nearly laterally homogeneous for broad-scale models of

satellite data, such data are not always available; when they are,

W(a,t) can be (16 nT) -2 (LANGEL, ESTES, & SABAKA, 1988a; 1989). A

derivation of weight matrices for the Definitive Geomagnetic Reference

Field (DGRF) models (IAGA, 1988) will be described in Part IC.

If SV coefficients were used as input and if an expected error

covariance for the time rate of change of the radial field coefficients
sv

(Eij - Eo[(_tei ) (_tej)}) were available, then (llc) would become

t f t sv t sv

4r_ir2 = _to {[_toO)ki(_Tgi - _Ti)d_] [f to(0kj(%_gj - _T7 j)dT]]at

where the time (z) -dependent matrix Qjsv is the upper triangular matrix
sv

square root of the SV weight matrix defined as in (12a) but with Ekl

replacing Ekl. This approach was not pursued. Though the DGRF models

employed were used to derive dummy SV models for the z integration, main

field weights seem more appropriate to the fitting of a sequence of main

field models and were thus used to weight the residuals.

In order to minimize the objective function with respect to the

flow parameters G i and _i' Ar2 in (llc) must be expressed in terms of

these parameters. By analogy with VOORHIES (1986b), write (0) as

_tBrp(b,t) = -Wse[Brp(b,t)Vs(b)] (14a)



or, using equations (2) through (8),

A

_tFkSk = -Vs,(risi[Vs(Ujsj)×r + Vs(_jsj)])

%_siaosj _esi%_sj
= b-2Fi( ]Uj +

sin8 sin8

(14b)

b-2F i{s i[n(j)] [n(j)+l]Sj - _sSi_eSj

_#siS#sj

sin28

(14c)

Left multiply the scalar equation (14 c) by slsine/4E and integrate over

8 and #. Then use the orthogonality of the spherical harmonics to

evaluate the left-hand side, relabel 1 -)k, and reorder the integrand on

the right-hand side noting terms like SkSs_ i = SiSk_ i because there is

no sum over k. The result is written

_tF k = (FiXijk)_ j + (FiYijk)_j = Pkj_j + Qkj_j (15)

where to develop the third-order coupling, the third-rank tensors are

Xij k -- b-2[2n(k)+l]<(_#Si_sS j - _sSia#Sj)Sk/sin@> = -Xjik

_si_sj

Yijk " b-2[2n(k)+l]<{Si[n(j)] [n(j)+l]Sj - a@sia@s j sin28

(16a)

)Sk> (16b)

and, for numerical integration over the CMB, the second-rank tensors are

Pkj " b-2[2n(k)+l]<Sk{_#Brp_SSj - _Brp_#Sj)/sin0>

Qkj " b-2[2n(k)+l]<Sk[Brp[n(J)][n(j)+l]Sj - _eBrp_0Sj

(17a)

_ _Brp_SJ}> .

sin2e (17b)

Upward continuation of (15) via (7b) yields

_t7 i = _'ik_tFk = _'ik[(FiXijk)_ j + (FiYijk)_ j]

= _ik[Pkj_j + Qkj_j]

" Pij_j + qij_j " Ail_l

(18a)

(18b)

(18c)

In (18c) Pij " _ikPkj ; qij " _ikOkj ; 51 " (_j;_j) defines the extended
vector obtained Dy concatenating the coefficients of T(b) with those of

U(b); and time-varying All - (Pij;qij) defines the extended matrix
obtained by concatenating the corresponding sub-matrices. Substitution

of (18c) into (llc) and relabeling yields

tf t t

4rU_r2 = _ ( [_ (_zgi - Aik_k)d_]Wij [_

to t o to

(_zgj - Ajk_k)d_] )dt
(19)

9



The square weighted residual (19) will be minimal only if it is

extreme, in which case its total derivatives with respect to the

parameters _i vanish. The first approximation to this condition was to

set the partial derivatives of (19) with respect to E1 zero. Then

t t

01 = -2;tf([; (Aik_kl)d_]Wij[; (8_gj - Ajk_k)dZ])dt

t o t o t o

(20a)

where the ultimate dependence of the Aik upon Brp(b,t), hence on v(b)

and the initial condition (i.e., on _i and Gi(to)), has been temporarily

omitted to achieve linearization. (Recent tests show this is a good

approximation, particularly for slow flows over short intervals). In

matrix notation equation (20a) is

tf t t

£ = -2; {[; A d_]T W [; (8_g- A _) dz])dt
t O t O = = to

where a single underline denotes a column vector, a double underline

denotes a matrix, and the T superscript indicates the transpose. The

linear least-squares (LLS) estimate of the parameters is

tf t t -i
_LLS = (; { [J A d_] T W [J A d_] ]dt)

- to t o to

tf t t

(; {[_ A dT] W [; _Zg dT])dt) (205)

to to t o

= (A T W A)-I(A T W _zg) (20c)

where the lower (single) overbar indicates dummy time integration over

from t o to t, and the upper (double) overbar indicates total time

integration over t from t o to tf. Equation (20c) provides the linear

least-squares estimate of the steady streamfunction and velocity

potential coefficients which best fit the expected evolution of the

radial magnetic flux density at Earth's surface during the interval.

There are three crucial differences between (14a-20c) above and

equations (10-17) of VOORHIES (1986b). Firstly, the squared residual is

non-uniformly weighted. Secondly, the square weighted residual includes

the double time integral needed to fit the evolving main field rather

than simple SV. Thirdly, the predicted radial field (Brp or its

coefficients F i) appears on the right-hand sides instead of the input

field (B r or its coefficients Gi). The Aik in (19) thus depend upon the

predicted main field at the CMB instead of the input field model. The

elements of A in (20) also depend upon the predicted field at the CMB

instead of t_e input field, but this dependence was suppressed to obtain

a system of linear equations for the model parameters _.

]0



To solve the non-linear problem, i developed an iterative method

wherein the linearized problem is first posed by supposing r i - G i for

purposes of estimating the elements of A. These can be computed using

equations (15), either (16) or (17), ana (18). The linearized least-

squares problem (20c) is then ,solved for _ and thus v(b) by back

substitution into (8). Brp(h,t) is computed by solving the forward

motional induction problem (14a) from the initial condition Br_(b,t o) =

Br(b, to). These values for Brp(b,t) are then used to compute F and _;

residuals (2 - _); both weighted and unweighted residuals; and-new

elements for A matrix elements via (15), either (16) or (17), and (18).

The new A matrices and the residuals comprise the input for the next

iteration. Let j indicate the jth such deep matrix iteration, let

_(j+l) = _(j) + __ (j+i), and let _.(j+l) = g - I(j) so that _Tg(j+l) =

(_% - _ (j ) ) . Then

_NLLS(j+I) = [AT(j) W A(j)]-1[AT(j) W _g(j)] (21)

describes this non-linear least-squares iteration procedure.

For t#t o the spherical harmonic content of Brp typically extends to

far higher degree than that of Br; such narrow-scale structure must be

preserved in the computation of the new A, though it will typically not

contribute to the weighted residuals due=to truncation of gi' hence Wij.

3.2 The Geostrophic Radial Vorticity Constraint

Parameterization of the geostrophic radial vorticity constraint

proceeds by writing the zero-mean geostrophic radial vorticity balance

at the top of the core in terms (£k) of its spherical harmonic expansion

v

_kSk = (_rUCOS@ + -sin8) (22a)
b

= b-2[_jd#Sj-- + _j(_sSjsine + n(j)[n(j)+l]Sjcos@)] (22b)

Left multiply (22b) by Sisin@, integrate over a spherical CMB, and use

the orthogonality of the spherical harmonics to obtain

_i = Cij_j + Dij_j " Bik_k (23a)

where, corresponding to _k' Bik is the appropriate element of either

Cij - b-2[2n(i)+l]<Si_#Sj> (23b)

or

Dij - b-2[2n(i)+l]<Si(BsSjsin8 + n(j)[n(j)+l]SjcosS]> (23c)

Only spherical harmonics of like degree and order contribute to the

C. • Indeed, only certain elements adjacent to the diagonal of matrix C
13"

(corresponding to cosm_[_sinm#] and sinm#[_cosm#]) are non-trivial;

these are readily evaluated analytically. Only spherical harmonics of

like order contribute to the Dij. However, if the spherical harmonic
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expansions of streamfunction -T(b) and velocity potential -U(b) are

truncated at degree and order N T = N u = N v, then Di_ (hence Bik) can

have non-trivial elements for i _ [Nv+l] [Nv+3] - whic_ can include i >

Nv[Nv+2] . This is due immediately to the factors of sin8 and cose

appearing in (22) and ultimately to the latitudinal variation of the

radial planetary vorticity _ = 2_cos8. Neglect of this fact (e.g.,

assuming Dij = 0 for i _ Nv(Nv+2)) may lead to a truncated velocity
field which _ails to be even approximately surficially geostrophic.

Equations (22) and (23) allow the geostrophic radial vorticity

constraint (Ic) to be rewritten

4_IgAg(b;t o ,tf)2 = 4KAg<[£iSi ] [£jSj]>

= Ag [£iNij£j ]

= _kBik (lgNij) Bj i_ 1

- (B %)TAq(B _)

(24a)

(24b)

(24c)

(24d)

where Ag is the normalization matrix multiplied by kg. Adding (24d) to
(20c) glves the constrained, weighted objective function

4_[Ar2 + kgAg 2] -- (_g - A _)Tw(_zg - A _) + (B _)TA_g(B _) (25)

This function is minimal only if it is extreme, in which case its

partial derivative with respect to any element of _ vanishes. Again

omitting the weak dependence of A_ on _, the constrained, weighted linear

least-squares estimate of the parameters is

_CLLS . (A T W A + B T _Ag B)-I(A T W _zg) (26)

In the context of the iterative solution to the non-linear,

constrained, weighted inverse problem

_CNLLS(j+I) = [AT(j) W A(j) + B T Ag B]-I(AT(j) W _9_g(j)

- E Ag jt (j) -  ol) (:7)

replaces equation (21). The prior estimate of the parameters is _go"

If _uo = 0 the bias is fixed on zero mean with intensity lq.' If _o =

_(j)-the bias floats with the iteration scheme-yielding a Iearning-

algorithm. In the latter case, small Ig may yield large corrections

_(j+l) which result in a rather ageostrophic velocity field far from

that used to calculate A(j) on iteration j; one might prefer an

iteration-dependent constraint parameter with such a learning algorithm.

12



Here attention is focused on _-o = 0 and values of kg which are
either zero for the unconstrained -Wplecewise steady inverse motional

induction problem or so large that the normalized mean square

ageostrophy (VOORHIES, 1986c)

<[_rucos8 + vsinS/b]2>

Ag - <[_rUCOSe] 2 + [vsin0/b]2 >

is less than 10 -4 . In the latter case, the constrained weighted least-

squares solution will equal that obtained using stochastic inversion

with prior information matrix BTAgB. Because the geostrophic constraint
is viewed as a plausible appro_i_aEion rather than an absolute necessity

required by genuine prior information, solutions (26) or (27) are not

considered to be stochastic estimates as described by MCLEOD (1986).

These estimates involve 'soft bias' rather than soft or hard bounds as

described by BACKUS (1988a,b). A hard version of the geostrophic radial

vorticity constraint might be imposed using the geostrophic basis

functions of BACKUS & LEMOUEL (1986).

Intermediate values of kg can be used to study the tradeoff between
the constraint and the length of the interval in which the flow is

assumed to be steady. This seems appropriate when the surficially

geostrophic flow hypothesis is tested in the context of a SFM/FFC model

with piecewise steady surficial core motions. This approach was taken

using the unweighted, non-iterative linearized method of VOORHIES

(1986b). Analysis of the resulting, severely truncated (N v = 5) fluid

velocity fields (VOORHIES, 1986c) showed that the constraint reduces the

tightness of fit; yet a mild constraint can increase slightly the

accuracy of geomagnetic forecasts made by extrapolating the effects of

steady motional induction at the CMB outside the interval to _ t _ tf

and subsequent upward continuation. The former point has been confirmed

using superior methods [VOORHIES, 1987c, 1988, 1989; BLOXHAM, 1988b].

3.3 Damping Mean Square Radial Vorticity and Mean Square Downwelling

If the SFM/FFC earth model and the working hypothesis of steady

(optionally geostrophic) flow were correct, and if complete, albeit

imperfect, information on the evolving geomagnetic field were available,

then the weighted (constrained) least-squares estimate (26-27) would

uniquely determine the (constrained) steady flow to within uncertainties

implied by the inverse of the total information matrix. This covariance

of the flow parameters [ATW_A + BT__Ag__B]-I is mere expectation; it depends

upon neither the flow parameters nor the residuals. Because complete

information is not available, if one steady flow adequately fitted the

incomplete, imperfect information, there may well be others which do so.

In seeking whether one such flow exists, it seems reasonable to

initially restrict attention to solutions which are spatially simple.

I chose to seek flows characterized by low values of the mean

square surficial curvature of both the streamfunction and the velocity

potential in hopes of eliminating unecessary flow structure-

particularly on small spatial scales. The radial vorticity

A

0)r(b) = z.V×Vs(b ) = -Vs2T(b ) = (zi{n(i) [n(i)+l]Si) (28)

is the surface Laplacian of the streamfunction; the downwelling

13



_rU(b) = .Vs.v s . _Vs2U(b) = _i(n(i)[n(i)÷l]Si ) (29)

is the surface Laplacian of the velocity potential. A velocity field

with small mean square radial vorticity and small mean square surface

divergence has small mean square surface curvature in both T and U.

This choice will tend to fill in any regions where the velocity field is

relatively poorly determined by interpolation from surrounding regions

without introducing unecessary flow sources and without smearing out

isolated jets, gyres, or plumes.

Parameterization of equation (id) using (28) and (29) yields

4EkdAd(b;to, tf)2 = 4Ekd<[Vs2T]2 + [Vs2U]2 > (30a)

= _iFij_ j + _iFij_ j . _ A d _ (30b)

where Fij - _ij4Eld[n(i)]2[n(i)+l]2/[2n(i) +I] and A_d is the extended
diagonal matrix with elements in both the upper left and lower right

quarters equal to those of Fii. Either <[_r(b)]2> or <[_ru(b)]2> may

be damped more strongly by adjusting the elements of A d. This option

was not pursued despite earlier findings (VOORHIES, i_84, 1986a)

suggesting more energetic toroidal flow.

Adding (30c) to (25) gives the damped, constrained, weighted

objective function (i)

4E[Ar2 + kgAg 2 +kdAd 2] = (_g_- A _)Tw(_Tg - A _) +

(B _)TAu(B _) + (_T Ad _) (31)

This total objective function is minimal only if it is extreme, in which

case its total derivatives with respect to the elements of _ all vanish.

The weighted, constrained, and damped linearized least-squares estimate

of the parameters puts the partial derivatives to zero and is given by

wB w

- (A T W A + B T _A B + A d)-l(A T W Szg)
(32)

In the context of the iterative solution to the weighted,

constrained, and damped non-iinear inverse problem,

_(j+l) -- [AT(j) W A(j) + B TAg B + A d] {AT(j) W _)_zg(j)

- T _% ]c cj) - %o] - - (33a)

replaces equation (21) or (27).
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The value of deep matrix element iteration depends upon how much

A(j) changes with j. This in turn depends upon how incompatible the

input field models, hence A(j=0), are with the earth model, and upon the

intitial condition, the e_timated fluid velocity, and the length of the

interval during which steady flow is presumed. Faster flows tend to

generate appreciable non-linear feedback more rapidly; yet even a slow

flow may do so eventually. Rough flows tend to generate small-scale

structure in Brp(b,t) via a chaotic cascade to ever higher wavenumbers.
This need not degrade the fit to broad-scale input field models because

such models do not specify small-scale field structure (i.e., because

unknown high-degree Gauss coefficients are assigned zero weight). In

fact, high-degree structure in Brp(b,t) can be exploited by the flow to

improve the fit to the broad-scale field models (via a reverse cascade).

Unlike broad-scale spherical harmonic models, surface data may be used

to test (or constrain) high-degree structure in Brp(a,t); measures of

Brp(b,t) and its time rate of change showed that the steady flows

derived from the DGRFs were not rough enough to grossly violate such

constraints during the several-decade interval targeted.

As noted above, _go was taken to be 0 in the actual calculations.

Though _do is commonly taken to be 0, many calculations have been

performed with floating bias _do -)_(J) and an adjustable convergence

factor I d -_Id(J+l). The resulting learning algorithm is useful for

deriving rougher flows which otherwise require values of fixed I d so

small as to inhibit convergence of the iteration scheme or even allow

towards local minima where _r 2 exceeds values found usingconvergence

larger Id or the learning algorithm. The learning algorithm thus

relaxes restrictions imposed by otherwise-fixed bias toward zero flow

roughness on tests of the steady flow hypothesis. Flows derived using

the learning algorithm are, of course, not optimally simple; they can be

smoothed by switching to the fixed I d iteration scheme with bias towards

zero flow roughness. Some may prefer this strategy to imposing both a

fixed bias toward no flow and a floating bias toward the previous

estimate governed by a convergence factor.

The use of a non-trivial flow estimate _(j) to predict Brp(b,t) and

calculate new A(j) may seem inconsistent with a fixed bias towards

parameters _do=Which are zero; however, the fixed bias strategy need not

be inferior to the learning algorithm; indeed, the former may yield

flows which represent any steady part of the true flow near the top of

the core more accurately than those derived by excessive repetition of

the learning algorithm due to errors in the SFM/FFC approximation.

Because deep matrix element iteration can be computationally

burdensome when equations (16) are integrated numerically over the CMB,

it seems worth ensuring that the best estimate of _(j) is used to obtain

Brp(b,t) for the subsequent calculation of A(j+I). In principle, this
can be accomplished by introducing shallow iteration whereby the

correction vector of streamfunction and velocity potential coefficients

determined on sub-iteration i+l of deep matrix element iteration j is

1

_(i+l,j) = [AT(j) W A(j) + B T _Ag B + A d] (AT(j) W _gzg(i,j)
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. tBT Ag BJt (i,j)- -^dt Ii,j)-  do3) (33b)

Shallow iteration proved to be of but slight use in practice.

4. SUMMARY

In the SFM/FFC earth model derivation of a (piecewise, statistically)

steady fluid flow near the top of the core from imperfect models of the

time-varying geomagnetic field requires solving a non-linear geophysical

inverse problem. In 1987, a method was developed to solve this problem.

The method attempts iterative minimization of an objective function

composed of the square weighted residual in the geomagnetic secular

change relative to a reference epoch; the ageostrophy of the flow as

measured by the mean square departure from a geostrophic radial

vorticity balance; and the spatial complexity of the flow as measured by

flow source amplitudes (the mean square radial vorticity and the mean

square downwelling of the flow). The geostrophic constraint and the

damping of spatial structure are optionally imposed with variable-

strength damping parameters. In order to mitigate the artificial

restrictions imposed by prior bias towards zero flow sources on the

investigation of steady flows, a learning algorithm was also developed

in which the bias is shifted towards the result of the previous

iteration and departures therefrom governed by a convergence factor.

When combined with numerical forward solution of the surficial

motional induction equation (14a), equation (33a) defines a method for

solving iteratively the non-linear geophysical inverse problem posed by

the simple suppositions of a source-free mantle surrounding a frozen-

flux core in surficially steady motion. The method involves two levels

of iteration, double time integrals of matrices whose elements are

surface integrals, a weight function which varies with both position and

time, and includes two optional constraints: one for imposing the

geostrophic radial vorticity balance and one for damping the spatial

complexity of the flow. Additionally, two kinds of weights have been

explored with fixed bias and learning algorithms. The reader may

appreciate the practical difficulties of applying this method and

keeping track of the various solutions, the irony of having such a

simple set of working hypotheses yield so complicated a method, and most

importantly, the complexity of the real Earth when stripped of such

simplifying suppositions.
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APPENDIX

Consider the use of general weight matrix elements _ij/f instead

of Wij/4E in (9c). The generalized weight matrix _ is the inverse of
the error covariance matrix for the radial field coefficients E:

Eij - Eo{eiej) (Ala)

_ijEjk = 8ik (Alb)

where e i is the (unknown) true error associated with the use of expected

radial field coefficients gi and only regular expectations (non-singular

E) are considered. This transforms _r 2 into the generalized square

_eighted residual

f[Ar*(a;to,tf)]2 - f

tf

f(t) [Sr*(a,t;t o)]2dt

to

.f
tf

to

(gi - 7i)_ij(gj - 7j )dt (A2)

=f
tf T

(g - 7) _ (g - 7) dt

to

where matrix notation is employed in the last step. The scalar f(t)

renormalizes the instantaneous generalized square weighted residual

[Sr*(a,t;to)]2, hence _r .2 It is taken to be the trace of _(t)E(t)

-typically the number of radial field coefficients fitted at=tim_ t.

No correction for the number of degrees of freedom of the flow model is

included because it is the significance of the residuals, rather than

the efficiency of the model, which is of interest here (see Part IC).

Let _kj denote the elements of the upper triangular matrix square
root of the positive definite generalized weight matrix

= _T_ (A3)

(BIERMAN, 1977, p40). Then

f[Ar*(a;to,tf)]2 = f

tf T T

(g - _) (_ (O(g - _)dt

t o

=I
tf T T -i

4_<(g - 7) Q) (S N S) (_ (g - 7)>dt

to - = =

=f
tf - - 2

4E<[Br(a,t) - Brp(a,t)] >dt

t o
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_-J
tf _ _ _

(gk - Yk ) (gk - Yk )dt

to

(A4)

where

- - 2n(k)+l 1/2 - - 2n(k)+l 1/2

B r - gk([ -] S k) Brp " 7k([ ] S k)
4_ 4_

and where gk " °kigi or _k m Oki_i are respectively the input or

predicted radial field coefficients measured in units of expected

uncertainty.

To better understand the general weights, introduce the vector of

expected or input Gauss coefficients pj(t) and recall the diagonal

matrix _ with elements Rij = - -J[n(i)+l)]Si_:

g = R p . . (A5)

Recall that V = R-IER -I represents the error covariance matrix for the

Gauss coefficients wSich, to the extent that the modeler's expectations

are realized, measures the (square correlated) uncertainties in the

Gauss coefficients. Then, in matrix notation, the generalized square

weighted signal in the radial field coefficients

[S(t)]2 = gT_g = pTRT_Rp = pTRT(RvRT)-IRp = pTv-lp (A6)

._ ...._L___ •

is th e weigh£ed signal in the Gauss coefficients..

Now, let _gi " gi (t) - gi(to )' let _Pi E Pi(t) - Pi(to), and omit

the uncertainty in the initial conditions at time t o . Relative to t o ,

the generalized weighted signal in the secular change at t is then

[AS(t;to)]2 = _gT _g = _pT V-i _p . ](t)[_r*(a,t;to)]2 (A7)

With initial condition _(t o) = g(to) _ hence predicted Gauss coefficients

e(to) = p(to), the instantaneousgeneralized square weighted residual

in the secular change at time t relative to t o is

_(t) [_r*(a,t;to)] 2 = (g - T)T_(g _ 7) = (P - p)Tv-I(P - P) (A8)

The time integral of (A8) from to to tf is (A2)-the total generalized

square weighted residual in the secular change accumulated during the

interval [to, tf].

By replacing Wij/4E with _j/_, one transforms the objective from
an attempt to fit the evolution of the weighted radial magnetic flux

density called for by a time series of geomagnetic field models into an

attempt to fit the evolution of the scalar geomagnetic potential called

for by a time series of weighted Gauss coefficients. The former may

seem more sensible because field components are observable, unlike the

scalar potential, and because horizontal components of the induction

equation are not used (0); however, the latter has appreciable merit.

For example, if the expected Gauss coefficients at time t could be

obtained from a geomagnetic data vector d, a symmetric data weight
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matrix M, and a normal equations matrix A such that

p = (ATMA)-IATMd = VATMd (A9)

then by (A6)

S(t)2 = gT_g = pTv-I p = dTMTAVV-IvATMd = dTMTAVATMd

-- =-- -- = -- __ _--

(AI0)

Now AVA T = A(ATMA)-IA T = Q implies QMA = A; but Q_ is not necessarily M -I

because A is typ[cal_y rectangular a_ no_ invertible. However, if Q=

were M -I. then S 2 would equal dTMd-the weighted signal in the data from

which=the geomagnetic field mode_-could be derived; then (A8) would

equal the instantaneous signal in the secular change indicated by the

weighted data, and its time integral would equal the total signal in the

secular change called for by the weighted data accumulated during the

interval.

Unfortunately such data might not exist due, for example, to the

use of damping, prior bias in deriving the field model, averaging of

coefficients, or roundoff errors. If such data do exist, then their

weighting might be suspect; moreover, the data may well contain

contributions from fields other than the broad-scale core field of

interest (e.g., crustal fields). The latter seem problematic due to the

time-varying spatial distribution of geomagnetic survey data. Inclusion

of such extraneous fields in the objective function seems inappropriate,

so a suitable modification of _ might be considered. Fortunately, great

compensation for crustal and _xternal fields can be achieved using the

correlated data weight matrix technique developed by LANGEL, ESTES &

SABAKA (1988a, 1989). This kind of approach was used to derive the DGRF

models for epochs 1945 through 1960 (LANGEL et al., 1988b). Yet it is

still not clear that general weights are preferable to radial field

weights-particularly as the correspondence between the weighted signal

in the data and the weighted signal in the field model is not rigorous.

As pointed out by G. BACKUE (1987, personal communication), it is

useful to introduce the quantity

x k m _kiei
(All)

with covariance matrix elements

Eo{XkX I) = Eo(_kieiej_lj) = _kiEo(eiej)_lj

= _kiEij_l j = 8k I (AI2)

For a tenth-degree DGRF model at epoch t n the trace of (AI2) is

Tr(Eo(XkXl) ) = Eo{Tr(XkXl)) = Eo{XkX k) = 120 = f(t n)

= Eo(((0kiei)_)kjej] = Eo(eiE-lije j) = Eo{ei_ije j)
(AI3)
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To the extent that the fitting residuals [gi - 7i] resemble the expected

uncertainty, the suitably normalized generalized square weighted

residual at time t n

[Sr* (a, tn;to) ]2 = [gi (tn) 7i(tn)]_ij(tn)[gj(tn) - 7j(tn)]/120 (AI4)

is expected to be unity. This quantity is readily evaluated provided

= E -1 can be obtained (see Part IC).

= =Of course, other kinds of geomagnetic field models, notably the

harmonic spline models of SHURE, PARKER, & BACKUS (1982), may not have

truncated spherical harmonic representations. In such cases, a total

change of basis functions seems less computationally burdensome than

transforming the finite dimensional expected error covariance for the

modeled parameters (say, the harmonic spline coefficients) into an

equivalent, apparently infinite dimensional, expected error covariance

for spherical harmonic coefficients of the radial field.
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ERRATA: PART IA.

Page 9, line 30. The reference should be upper case and in

parentheses rather than square brackets.

Page 22, lines 28-34. The passage "On Earth's surface ... the main

field. Nevertheless .... " should be replaced with "Near Earth's surface

(and apparently within the Earth) the high frequency electromagnetic

oscillations of solar and terrestrial origin have far greater energy

density than the main geomagnetic field, so Ampere's law is broken.

However, _... " . _\_t

Page 25, line i1-12. Note that non-subscripted _(r,t) = Z i _i(r,t)
can be a sum of matrices.
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